Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Saudi Pharm J ; 32(5): 102023, 2024 May.
Article in English | MEDLINE | ID: mdl-38550333

ABSTRACT

The escalation of many coronavirus variants accompanied by the lack of an effective cure has motivated the hunt for effective antiviral medicines. In this regard, 18 Saudi Arabian medicinal plants were evaluated for SARS CoV-2 main protease (Mpro) inhibition activity. Among them, Terminalia brownii and Acacia asak alcoholic extracts exhibited significant Mpro inhibition, with inhibition rates of 95.3 % and 95.2 %, respectively, at a concentration of 100 µg/mL. Bioassay-guided phytochemical study for the most active n-butanol fraction of T. brownii led to identification of eleven compounds, including two phenolic acids (1, and 2), seven hydrolysable tannins (3-10), and one flavonoid (11) as well as four flavonoids from A. asak (12-15). The structures of the isolated compounds were established using various spectroscopic techniques and comparison with known compounds. To investigate the chemical interactions between the identified compounds and the target Mpro protein, molecular docking was performed using AutoDock 4.2. The findings identified compounds 4, 5, 10, and 14 as the most potential inhibitors of Mpro with binding energies of -9.3, -8.5, -8.1, and -7.8 kcal mol-1, respectively. In order to assess the stability of the protein-ligand complexes, molecular dynamics simulations were conducted for a duration of 100 ns, and various parameters such as RMSD, RMSF, Rg, and SASA were evaluated. All selected compounds 4, 5, 10, and 14 showed considerable Mpro inhibiting activity in vitro, with compound 4 being the most powerful with an IC50 value of 1.2 µg/mL. MM-GBSA free energy calculations also revealed compound 4 as the most powerful Mpro inhibitor. None of the compounds (4, 5, 10, and 14) display any significant cytotoxic activity against A549 and HUVEC cell lines.

2.
Int J Biol Macromol ; 264(Pt 1): 130278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373565

ABSTRACT

Ribophorin-1 serves as one of the subunits of the oligosaccharyltransferase (OST) complex located in the endoplasmic reticulum (ER). Until now, RPN-1 was considered an ER protein. However, our findings reveal that a minor fraction of RPN-1 escapes from the lumen of the ER and is ectopically expressed on the surface of different cell lines. The precise mechanism of protein translocation is unknown. The expression of RPN-1 was demonstrated through the isolation of membrane proteins using surface biotinylation and sucrose density gradient techniques. The confirmation of RPN-1 was obtained through surface staining using a specific antibody, revealing its expression on various cell lines. Additionally, we examined the expression of RPN-1 in different populations of PBMCs and observed a differential regulation of RPN-1 within PBMC subpopulations. Notably, there was a significant expression of RPN-1 on monocytes and B cells, but there was little to no population of T cells expressing RPN-1. We confirmed the expression of RPN-1 on THP-1, U937, and Jurkat cells. We also confirmed their surface expression through si-RNA knockdown. Our study shows RPN-1 expression on various cell surfaces, suggesting varied regulation among cell types. In the future, we may uncover its roles in immune function, signaling, and differentiation/proliferation.


Subject(s)
Leukocytes, Mononuclear , Membrane Proteins , Humans , Leukocytes, Mononuclear/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Endoplasmic Reticulum/metabolism , Cell Membrane/metabolism , Glycosyltransferases/metabolism
3.
Saudi Pharm J ; 32(1): 101898, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192384

ABSTRACT

Dodonaea viscosa grows widely in Saudi Arabia, but studies evaluating its neuroprotective activity are lacking. Thus, this study aimed to isolate and identify the secondary metabolites and evaluate the neuroprotective effects of D. viscosa leaves. The isolation and identification of phytochemicals were performed using chromatographic and spectroscopic techniques. The neuroprotective potential of the extract was evaluated against focal cerebral ischaemia-reperfusion injury in rat model. Neurobehavioural deficits in the rats were evaluated, and their brains were harvested to measure infarct volume and oxidative biomarkers. Results revealed the presence of three compounds: a novel isoprenylated phenolic derivative that was elucidated as 4-hydroxy-3-(3'-methyl-2'-butenyl) phenyl 1-O-ß-D-apiosyl-(1''' â†’ 6'')- ß-D-glucopyranoside (named Viscomarfadol) and two known compounds (isorhamnetin-3-O-rutinoside and epicatechin (4-8) catechin). Pre-treatment of the rats with the extract improved neurological outcomes. It significantly reduced neurological deficits and infarct volume; significantly reduced lipid peroxidation, as evidenced by decreased malondialdehyde levels; and significantly elevated antioxidant (superoxide dismutase, catalase, and glutathione) activities. These results indicate that D. viscosa is a promising source of bioactive compounds that can improve neurological status, decrease infarct volume, and enhance antioxidant activities in rats with cerebral ischaemic injury. Thus, D. viscosa could be developed into an adjuvant therapy for ischaemic stroke and other oxidative stress-related neurodegenerative disorders. Further investigations are warranted to explore other bioactive compounds in D. viscosa and evaluate their potential neuroprotective activities.

4.
J Biomol Struct Dyn ; : 1-23, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38174404

ABSTRACT

Recent monkeypox virus (MPXV) infections show the risk of MPXV transmission that persists today and the significance of surveillance and quick response methods to stop the virus's spread. Currently, the monkeypox virus infection is not specifically treated. In this study, QSAR models were designed using known inhibitors of cysteine proteinase from the vaccinia virus, where the Random Forest model and Ridge model had showed the best correlation between predicted and observed EC50. These models were used to screen Maliaceae family phytochemicals against MPXV cysteine proteinase. The compound, IMPHY010637 was detected in top 5 from both the QSAR screening models and showed best docked score (-8.6 kcal/mol) and thus selected for further investigation. Further, the IMPHY010637 showed interaction with the catalytic residue His241 of the protein as reported in earlier studies. The ADMET analysis of the compound showed the acceptable drug-like properties of IMPHY010637. However, these properties could be improved after experimental validation of protein-ligand binding. Both docked complex and poses created in 100 ns MD simulation of the protein-ligand complex showed the presence of multiple hydrogen bonds. RMSD and conformation analysis showed stable binding of IMPHY010637 with the cysteine proteinase of MPXV at its active site. Compared to the known inhibitor, IMPHY010637 showed better binding with the protein as observed by the PCA and MM/GBSA analysis. This study concluded IMPHY010637 as a potential inhibitor for the cysteine proteinase of MPXV using computational methods that could be tested in in-vitro experiments.Communicated by Ramaswamy H. Sarma.

5.
J Biomol Struct Dyn ; : 1-20, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234048

ABSTRACT

Marburg virus infections are extremely fatal with a fatality range of 23% to 90%, therefore there is an urgent requirement to design and develop efficient therapeutic molecules. Here, a comprehensive temperature-dependent molecular dynamics (MD) simulation method was implemented to identify the potential molecule from the anti-dengue compound library that can inhibit the function of the VP24 protein of Marburg. Virtual high throughput screening identified five effective binders of VP24 after screening 484 anti-dengue compounds. These compounds were treated in MD simulation at four different temperatures: 300, 340, 380, and 420 K. Higher temperatures showed dissociation of hit compounds from the protein. Further, triplicates of 100 ns MD simulation were conducted which showed that compounds ID = 118717693, and ID = 5361 showed strong stability with the protein molecule. These compounds were further validated using ΔG binding free energies and they showed: -30.38 kcal/mol, and -67.83 kcal/mol binding free energies, respectively. Later, these two compounds were used in steered MD simulation to detect its dissociation. Compound ID = 5361 showed the maximum pulling force of 199.02 kcal/mol/nm to dissociate the protein-ligand complex while ID = 118717693 had a pulling force of 101.11 kcal/mol/nm, respectively. This ligand highest number of hydrogen bonds with varying occupancies at 89.93%, 69.80%, 57.93%, 52.33%, and 50.63%. This study showed that ID = 5361 can bind with the VP24 strongly and has the potential to inhibit its function which can be validated in the in-vitro experiment.Communicated by Ramaswamy H. Sarma.

6.
Food Chem X ; 20: 100875, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144801

ABSTRACT

Astronauts required food that is healthy, nutritious, and tasted good, while also meeting their dietary needs. To ensure the astronauts' nutritional needs are met, a Nutritional Status Assessment Supplemental Medical Objective (Nutrition SMO) is conducted. This involves collecting blood and urine samples from the astronauts, which are then tested and analysed. The assessment looks for indications of bone health, muscle loss, hormonal imbalances, gastrointestinal functions, cardiovascular health, iron metabolism, ophthalmic changes, and immune changes that occur during space flight under conditions of microgravity or weightlessness. It was discovered that iron levels in astronauts tend to increase due to the decrease in body volume during space flight. It requires skilful optimization considering nutrient delivery, shelf life, and packaging of space food, while minimizing resource usage and ensuring reliability, safety, and addressing the physiological and psychological effects on the crew members.

7.
Heliyon ; 9(12): e22691, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125510

ABSTRACT

Aloe perryi (AP) has gained considerable interest as a medicinal herb in various biological applications due to its rich phytochemical composition. However, the therapeutic benefits of AP could be potentiated by utilizing nanotechnology. Moreover, cationic solid lipid nanoparticles (CSLNs) possess remarkable characteristics that can greatly enrich a variety of biological uses. An optimization approach was used to achieve high-quality CSLNs to maximize the therapeutic efficacy of AP. Therefore, a factorial design was used to investigate the influence of various variables on the attributes of CSLNs quality. In this study, the factors under investigation were compritol 888 ATO (C-888, X1), poloxamer 188 (PL188, X2), and chitosan (CS, X3), which served as independent variables. The parameters measured as dependent variables included particle size (Y1), zeta potential (Y2), and encapsulation efficiency EE (Y3). The relationship among these variables was determined by Analysis of Variance (ANOVA) and response surface plots. The results revealed that PL188 played a significant role in reducing the particle size of CSLNS (ranging from 207 to 261 nm with 1 % PL188 to 167-229 nm with 3 % PL188). Conversely, an increase in the concentration of CS led to a rise in the particle size. The magnitude of positive zeta potential values was dependent on the increased concentration of CS. Moreover, the higher amounts of C-888 and PL188 improved the EE% of the CSLNs from 42 % to 86 %. Furthermore, a concentration-dependent antioxidant effect of the optimized AP-CSLNs was observed. The antioxidant activity of the optimized AP-CSLNs at 100 µg/mL was 75 % compared to 62 % and 60 % for AP-SLNs and AP solution, respectively. A similar pattern of improvement was also observed with antimicrobial, and anticancer activities of the optimized AP-CSLNs. These findings demonstrated the potential of AP-CSLNs as a carrier system, enhancing the biological activities of AP, opening new possibilities in herbal medicines.

8.
Saudi Pharm J ; 31(12): 101869, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033747

ABSTRACT

The Rosaceae family includes the evergreen subtropical tree known as Eriobotrya japonica Lindl (loquat). To test the effect of several E. japonica leaf extracts on shielding the heart from carbon tetrachloride (CCl4) cytotoxic effects, we employed carbon tetrachloride (CCl4), a highly toxic chemical, to cause cardiotoxicity in rats. The heart function enzymes that were examined were lactate dehydrogenase (LDH) and Creatine Kinase. When compared to both the hazardous and normal groups, it was discovered that the protective dose of ethyl acetate extract (200 mg/Kg) and aqueous extract (100 and 200 mg/Kg) lowered the cardiac indicators. Total protein, malondialdehyde (MDA), and non-protein sulfhydryls (NP-SH) indicators were used to assess myocardial oxidative stress. Rats pretreated with ethyl acetate (200 mg/Kg) and aqueous extract (100 and 200 mg/Kg) showed higher levels of total protein than the control group. When compared to the silymarin group, all of the loquat leaf extracts examined in this study increased the amount of the MDA enzyme. The data also demonstrated that, when compared to the results from the normal group, aqueous extract (100 and 200 mg/Kg) enhanced the amount of NP-SH. The histopathology showed that administration of all loquat leaf extracts at doses of (100 mg/kg, 200 mg/kg) before CCl4 intoxication greatly reduced the modifications that were exhibited by CCl4 and preserved cardiac muscles that were very equivalent to those of normal control. Based on the aforementioned data, we deduced that loquat leaf aqueous extract provided the highest protection for heart tissue against the effects of CCl4 intoxication. Through chemical examination of the methanolic extract, four flavonoids were extracted and identified. Their structures were found to be kaempferol-3-O-rhamnoside 1, quercetin-3-O-rhamnoside 2, quercetin-3,7 di-O-glycerides 3, and roseoside 4.

9.
Pathogens ; 12(10)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37887736

ABSTRACT

BACKGROUND AND AIM: Hepatocellular carcinoma (HCC) is a significant complication of hepatitis B and still poses a global public health concern. This systematic review and meta-analysis provide adequate details on the prevalence of HCC in the HBV population within Southeast Asian countries. METHOD: Following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) criteria, a thorough search for literature discussing the prevalence of HCC in the HBV population within southeast Asia was performed. Eligible studies were subjected to a meta-analysis utilising a DerSimonian and Laird approach and a random effect model. A protocol was registered with PROSPERO (CRD42023423953). RESULT: Our study meticulously recovered 41 articles from seven countries in Southeast Asia, namely Cambodia, Indonesia, Malaysia, the Philippines, Singapore, Thailand, and Vietnam. A total of 39,050 HBV patients and 7479 HCC cases in southeast Asia were analysed. The pooled prevalence of HCC in HBV cases within southeast Asia was 45.8% (95% CI, 34.3-57.8%, I2 = 99.51%, p < 0.001). Singapore (62.5%, CI: 42.4-79.1) had the highest pooled prevalence of HCC in the HBV population compared to Vietnam, with the lowest estimate (22.4%, CI: 9.9-44.9). There was a drop in the pooled prevalence of HCC in HBV from 2016 until now (37.6%, CI: 19.2-60.5). CONCLUSION: The findings of this review reveal a high pooled prevalence of HCC in the HBV population and therefore stir the need for routine screening, management, and surveillance.

10.
Int J Mol Sci ; 24(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37895063

ABSTRACT

Enzymatic hydrolysis of bovine and human hemoglobin generates a diversity of bioactive peptides, mainly recognized for their antimicrobial properties. However, antimicrobial peptides stand out for their ability to specifically target cancer cells while preserving rapidly proliferating healthy cells. This study focuses on the production of bioactive peptides from hemoglobin and evaluates their anticancer potential using two distinct approaches. The first approach is based on the use of a rapid screening method aimed at blocking host cell protein synthesis to evaluate candidate anticancer peptides, using Lepidium sativum seed germination as an indicator. The results show that: (1) The degree of hydrolysis (DH) significantly influences the production of bioactive peptides. DH levels of 3 to 10% produce a considerably stronger inhibition of radicle growth than DH 0 (the native form of hemoglobin), with an intensity three to four times greater. (2) Certain peptide fractions of bovine hemoglobin have a higher activity than those of human hemoglobin. (3) The structural characteristics of peptides (random coil or alpha helix) play a crucial role in the biological effects observed. (4) The α137-141 peptide, the target of the study, was the most active of the fractions obtained from bovine hemoglobin (IC50 = 29 ± 1 µg/mL) and human hemoglobin (IC50 = 48 ± 2 µg/mL), proving to be 10 to 15 times more potent than the other hemoglobin fractions, attributed to its strong antimicrobial potential. The second approach to assessing anticancer activity is based on the preliminary in vitro analysis of hydrolysates and their peptide fractions, with a focus on the eL42 protein. This protein is of major interest due to its overexpression in all cancer cells, making it an attractive potential target for the development of anticancer molecules. With this in mind, astudy was undertaken using a method for labeling formylase (formyl-methionyl-tRNA transformylase (FMTS)) with oxidized tRNA. This approach was chosen because of the similarities in the interaction between formylase and the eL42 protein with oxidized tRNA. The results obtained not only confirmed the previous conclusions but also reinforced the hypothesis that the inhibition of protein synthesis plays a key role in the anticancer mechanism of these peptides. Indeed, the data suggest that samples containing α137-141 peptide (NKT) and total hydrolysates may have modulatory effects on the interaction between FMTS and oxidized tRNA. This observation highlights the possibility that the latter could influence molecular binding mechanisms, potentially resulting in a competitive situation where the ability of substrate tRNA to bind efficiently to ribosomal protein is compromised in their presence. Ultimately, these results suggest the feasibility of obtaining candidate peptides for biological anticancer drugs from both human and bovine hemoglobin sources. These scientific advances show new hope in the fight against cancer, which affects a large number of people around the world.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Humans , Hydrolysis , Peptides/pharmacology , Peptides/chemistry , Anti-Infective Agents/pharmacology , Hemoglobins/chemistry , Antineoplastic Agents/pharmacology , RNA, Transfer , Protein Hydrolysates/pharmacology
11.
Iran J Basic Med Sci ; 26(10): 1202-1211, 2023.
Article in English | MEDLINE | ID: mdl-37736508

ABSTRACT

Objectives: The present study evaluated the protein-based analysis to unravel the role and mechanism behind the Dendropthae falcata plant extract treatment in breast cancer cells. Materials and Methods: The protein sample was extracted from the cancer cells after treatment with the plant extract and subjected to two-dimensional electrophoresis for protein separation. Further, the proteins that were differentially regulated among the samples which were treated and non-treated were selected and processed further for protein identification using a tandem mass spectrometry approach. Results: Using these strategies, we identified 16 potential candidates which were showing remarkable changes in treated samples. All the candidates were analyzed further for gene ontology analysis, and it was observed that all proteins were involved in multiple pathways pertaining to the carcinogenesis process. Specifically, apoptotic pathway proteins including BAD, BIK, BID, CASP8, MCL1, BCL2, and BAK1 were highly impacted by treatment with D. falcata plant extract. All these protein hits were further taken for validation experiments using RT PCR analysis. Conclusion: Initiation of these apoptotic proteins by D. falcata plant extract treatment in breast cancer cells shows a positive direction toward nature-based alternative medicine.

12.
Saudi Pharm J ; 31(10): 101753, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37705878

ABSTRACT

The current study aimed to evaluate the phytochemical composition, quality control, and antioxidant, antibacterial, antifungal, antihyperglycemic activities, and toxicity assessment of Crataegus monogyna Jacq (C. monogyna) and Crataegus laciniata Ucria (C. laciniata) fruits aqueous extracts. The quality control of the plant material revealed that it is free of heavy metals and the acidity and ash parameters comply with international standards. HPLC-DAD analysis revealed the presence of eight phenolic compounds in the C. monogyna extract and nine compounds in the C. laciniata extract, with coumaric acid present only in the C. laciniata extract. According to the findings, both extracts are high in total polyphenols, total flavonoids, and condensed tannins. The results of the antioxidant activity revealed that our extracts have significant effects against 2, 2-diphényl 1-picrylhydrazyle (DPPH), and Ferric Reducing Antioxidant Power (FRAP). The antibacterial test revealed that the two extracts tested were effective against four bacterial strains, including Staphylococcus aureus, Escherichia coli, Enterobacter cloacae, and Shigella dysenteria, but were ineffective against Salmonella typhi, and Acinetobacter baumanii. In addition, extracts from both plants showed remarkable antihyperglycemic activity with no acute toxicity. In conclusion, the extracts studied could be a good source of bioactive molecules with antioxidant, antimicrobial, and anti-diabetic activity for pharmaceutical applications.

13.
J Biomol Struct Dyn ; : 1-22, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668010

ABSTRACT

The underdeveloped countries with large populations are facing a grave global threat in the form of cholera. Vibrio cholerae, the etiologic agent of Cholera has drawn attention recently due to antimicrobial resistance and resulting outbreaks that necessitates establishment of novel medications to counteract virulence and viability of the pathogen. Sterculia urens Roxb. (Malvaceae) is an ethnomedicinally important tree, which harbors a good number of bioactive phytocompounds. In the present study, 53 phytocompounds of S. urens were screened against the promising target ToxT of V. cholerae employing structure-based drug design approach that revealed three lead compounds, viz., 4,4,5,8-Tetramethylchroman-2-ol (-8.2 kcal/mol), Beta-Bisabolol (-8.2 kcal/mol) and Ledol (-8.7 kcal/mol) with satisfactory ADMET properties. Molecular dynamics simulation for 150 ns unveiled notable compactness and structural stability for the lead compounds considering RMSD, RMSF, Rg, MolSA, PSA and protein-ligand contacts parameters. Molecular mechanics-based MM/GBSA binding energy calculation revealed Beta-Bisabolol (-66.74 kcal/mol) to have better scores than 4,4,5,8-Tetramethylchroman-2-ol (-47.42 kcal/mol) and Ledol (-65.79 kcal/mol). Enzymes were mostly found as drug target class, and Nabilone was found as a structurally similar analog for 4,4,5,8-Tetramethylchroman-2-ol. These discoveries could aid in revealing new antibacterial medications targeting ToxT to combat Cholera.Communicated by Ramaswamy H. Sarma.

14.
Saudi Pharm J ; 31(8): 101669, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576853

ABSTRACT

Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.

15.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37631023

ABSTRACT

Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.

16.
Materials (Basel) ; 16(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570067

ABSTRACT

Lung cancer is a formidable challenge in clinical practice owing to its metastatic nature and resistance to conventional treatments. The codelivery of anticancer agents offers a potential solution to overcome resistance and minimize systemic toxicity. The encapsulation of these agents within nanostructured lipid carriers (NLCs) provides a promising strategy to enhance lymphatic delivery and reduce the risk of relapse. This study aimed to develop an NLC formulation loaded with Gefitinib and Azacitidine (GEF-AZT-NLC) for the treatment of metastatic-resistant lung cancer. The physicochemical properties of the formulations were characterized, and in vitro drug release was evaluated using the dialysis bag method. The cytotoxic activity of the GEF-AZT-NLC formulations was assessed on a lung cancer cell line, and hemocompatibility was evaluated using suspended red blood cells. The prepared formulations exhibited nanoscale size (235-272 nm) and negative zeta potential values (-15 to -31 mV). In vitro study revealed that the GEF-AZT-NLC formulation retained more than 20% and 60% of GEF and AZT, respectively, at the end of the experiment. Hemocompatibility study demonstrated the safety of the formulation for therapeutic use, while cytotoxicity studies suggested that the encapsulation of both anticancer agents within NLCs could be advantageous in treating resistant cancer cells. In conclusion, the GEF-AZT-NLC formulation developed in this study holds promise as a potential therapeutic tool for treating metastatic-resistant lung cancer.

17.
Life (Basel) ; 13(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511960

ABSTRACT

Breast cancer is a disease characterized by the uncontrolled proliferation of malignant cells in breast tissue, and oxidative stress activated by an accumulation of reactive oxygen species (ROS) is associated with its development and progression. Essential oils from medicinal plants, known for their antioxidant and therapeutic properties, are being explored as alternatives. Ptychotis verticillata, also known as Nûnkha, is a medicinal plant native to Morocco, belonging to the Apiaceae family, and used for generations in traditional medicine. This study focuses on the phytochemical characterization of P. verticillata essential oil (PVEO) from the province of Oujda, Morocco, for its therapeutic properties. The essential oil was obtained by hydro-distillation, and its volatile components were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed the presence of various aromatic and terpene compounds, with carvacrol being the most abundant compound. PVEO showed antioxidant properties in several tests, including ß-carotene bleaching, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and total antioxidant capacity (TAC). It also demonstrated cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cell lines, with higher selectivity for MDA-MB-231. The results reveal that Ptychotis verticillata essential oil (PVEO) could be a promising natural alternative for the treatment of breast cancer.

18.
Drug Dev Res ; 84(7): 1453-1467, 2023 11.
Article in English | MEDLINE | ID: mdl-37519092

ABSTRACT

Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Drug Carriers/chemistry , Gefitinib , Simvastatin/pharmacology , Simvastatin/therapeutic use , Drug Repositioning , Lipids , Particle Size
19.
Vaccines (Basel) ; 11(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37376459

ABSTRACT

Despite the effectiveness of current vaccines in reducing the spread and severity of SARS-CoV-2 infections, many people, including migrants, refugees, and foreign workers, are hesitant to be vaccinated. This systematic review and meta-analysis (SRMA) was conducted to determine the pooled prevalence estimate of the acceptance and hesitancy rates of the COVID-19 vaccine among these populations. A comprehensive search of the peer-reviewed literature indexed in PubMed, Scopus, Science Direct, and Web of Science databases was conducted. Initially, 797 potential records were identified, of which 19 articles met the inclusion criteria. A meta-analysis of proportions using data from 14 studies revealed that the overall acceptance rate of COVID vaccination among 29,152 subjects was 56.7% (95% CI: 44.9-68.5%), while the prevalence of vaccine hesitancy among 26,154 migrants reported in 12 studies was estimated to be 31.7% (95% CI: 44.9-68.5%). The acceptance rate for the COVID-19 vaccination first declined from 77.3% in 2020 to 52.9% in 2021 and then slightly increased to 56.1% in 2022. The most frequent factors influencing vaccine hesitancy were worries about vaccine efficacy and safety. Intensive vaccination campaigns should be implemented to raise vaccination awareness among migrants, which will increase the acceptance rate for the COVID-19 vaccine and result in herd immunity.

20.
Int J Nanomedicine ; 18: 1793-1808, 2023.
Article in English | MEDLINE | ID: mdl-37051315

ABSTRACT

Purpose: Curcumin (CUR) and piperine (PP) are bioactive compounds with prominent pharmacological activities that have been investigated for the treatment of various diseases. The aim of the present study is to develop Bio-SNEDDS for CUR and PP as a combined delivery system for cancer therapy. Methods: CUR and PP loaded Bio-SNEDDSs with varying compositions of bioactive lipid oils, surfactants, and cosolvents were prepared at room temperature. Bio-SNEDDSs were characterized using a Zetasizer Nano particle size analyzer and further examined by transmission electron microscopy (TEM) for morphology. The in vivo toxicity of the preparations of Bio-SNEDDS was investigated in wild-type zebrafish embryos and cytotoxicity in THP-1 (human leukemia monocytic cells), Jurkat (human T lymphocyte cells) and HUVEC (non-cancerous normal) cells. Results: Bio-SNEDDSs were successfully developed with black seed oil, Imwitor 988, Transcutol P and Cremophor RH40 at a ratio of 20/20/10/50 (%w/w). The droplet size, polydispersity index and zeta potential of the optimized Bio-SNEDDS were found to be 42.13 nm, 0.59, and -19.30 mV, respectively. Bio-SNEDDS showed a spherical structure evident by TEM analysis. The results showed that Bio-SNEDDS did not induce toxicity in zebrafish embryos at concentrations between 0.40 and 30.00 µg/mL. In TG (fli1: EGFP) embryos treated with Bio-SNEDDS, there was no change in the blood vessel structure. The O-dianisidine staining of Bio-SNEDDS treated embryos at 48 h post-fertilization also showed a significant reduction in the number of blood cells compared to mock (DMSO 0.1% V/V) treated embryos. Bio-SNEDDS induced significant levels of cytotoxicity in the hematological cell lines THP-1 and Jurkat, while low toxicity in normal HUVEC cell lines was observed with IC50 values of 18.63±0.23 µg/mL, 26.03 ± 1.5 µg/mL and 17.52 ± 0.22 µg/mL, respectively. Conclusion: Bio-SNEDDS exhibited enhanced anticancer activity and could thus be an important new pharmaceutical formulation to treat leukemia.


Subject(s)
Curcumin , Hematologic Neoplasms , Leukemia , Nanoparticles , Animals , Humans , Pharmaceutical Preparations , Curcumin/pharmacology , Zebrafish , Drug Delivery Systems/methods , Solubility , Administration, Oral , Surface-Active Agents/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Biological Availability
SELECTION OF CITATIONS
SEARCH DETAIL
...